Quantcast
Channel: MaplePrimes - Questions and Posts tagged with system
Viewing all articles
Browse latest Browse all 164

Parametric linear system

$
0
0

Hi,

 

I am trying to solve a simple system of the form AX=0, where A is a N*N matrix, X is an N*1 vector (and the right-hand side of the equation is an N*1 vector of zeros, I apologize for the inexact notation). The difficulty comes from the fact that the values of A are parameterized by 2*N parameters (that I will write as the 2*N vector P), and I would like to get a solution in the form X=f(P).

 

One solution is to try to use LinearAlgebra[LinearSolve], but it only returns the trivial solution X=0, which I am not interested in.

Another solution is to compute analytically the Moore-Penrose pseudoinverse Ag of A, as the general solution is of the form

(I - Ag A)f ;

where f is a vector of free parameters. However, even for a small matrix size (N=4), Maple is still computing after 3 hours on my (fairly powerful) machine, and it is taking more and more memory over time. As the results are polynomial/rational equations in the parameters P, I was actually expecting Maple to be more powerful than other softwares, but for this particular problem, Matlab's symbolic toolbox (muPAD) gives quick solutions until N=6. I need, in the end, to solve additional polynomial/rational equations that are derived from the solutions X=f(P), where Matlab fails. This is why I would really like to be able to solve the above-mentioned problem AX=0 with Maple in order to try to solve the subsequent step of the problem (polynomial system) with Maple.

 

Any suggestions on how to do this would be highly appreciated! Thank you very much for your time and help.

 

Laureline


Viewing all articles
Browse latest Browse all 164

Trending Articles