Quantcast
Channel: MaplePrimes - Questions and Posts tagged with system
Viewing all articles
Browse latest Browse all 164

Solve command returning incorrect values

$
0
0

I am attempting to solve a system of second order ODEs. I place conditions on the solutions and use the solve command to figure the correct constants for the general solutions of the ODEs; however, the conditions do not appear to hold after I substitute the constants back into the general solutions. Any help would be greatly appreciated. Here's the code and an explanation:

First some constants

> A := 1; B := 9/10;
> j := 1-1/B;

 This is our homogeneous odes. I will give the general solutions of the inhomogeneous system momentarily 

> eqnv1 := diff(v1(x), `$`(x, 2)) = (1-1/(j+1))*v1(x)+v2(x)/(j+1);
> eqnv2 := diff(v2(x), `$`(x, 2)) = -v1(x)/(A*(j+1))+(B/A+1/(A*(j+1)))*v2(x);

Next we get the general solution of this sytem of odes.

> soln := dsolve([eqnv1, eqnv2])

Next we have our solutions of the inhomogeneous problem1. Basically solution v1neg, v2neg on [0,xi] and v1pos, v2pos on [xi,1]. We will assume v1,v2 are C^1 across xi; however, the location of xi is not known at this time so they must remain split.

> v1neg := op([1, 2], soln)-1;
> v2neg := op([2, 2], soln)-1/B;
> v1pos := op([1, 2], soln)+1;
> v2pos := op([2, 2], soln)+1/B;

There's probably a better way to do this, but I relabeled the constants:

> v1negc := subs([_C1 = a[1], _C2 = a[2], _C3 = a[3], _C4 = a[4]], v1neg);
> v2negc := subs([_C1 = a[1], _C2 = a[2], _C3 = a[3], _C4 = a[4]], v2neg);
>
> v1posc := subs([_C1 = a[5], _C2 = a[6], _C3 = a[7], _C4 = a[8]], v1pos);
> v2posc := subs([_C1 = a[5], _C2 = a[6], _C3 = a[7], _C4 = a[8]], v2pos);

Next we have eight conditions the solutions must satisfy. Namely v1, v2 are C^1 across xi and v1',v2' are 0 at {0,1}.

> syscon1 := subs(x = xi, v1negc) = subs(x = xi, v1posc);
> syscon2 := subs(x = xi, v2negc) = subs(x = xi, v2posc);
> syscon3 := subs(x = xi, diff(v1negc, x)) = subs(x = xi, diff(v1posc, x));
> syscon4 := subs(x = xi, diff(v2negc, x)) = subs(x = xi, diff(v2posc, x));
> syscon5 := subs(x = 0, diff(v1negc, x)) = 0;
> syscon6 := subs(x = 0, diff(v2negc, x)) = 0;
> syscon7 := subs(x = 1, diff(v1posc, x)) = 0;
> syscon8 := subs(x = 1, diff(v2posc, x)) = 0;

We solve to get the constants for the solutions.

> constants := simplify(evalf(solve({syscon1, syscon2, syscon3, syscon4, syscon5, syscon6, syscon7, syscon8}, {a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]})));
>

We substitute the values for the constants.


> a[1] := op([1, 2], constants); a[2] := op([2, 2], constants); a[3] := op([3, 2], constants); a[4] := op([4, 2], constants); a[5] := op([5, 2], constants); a[6] := op([6, 2], constants); a[7] := op([7, 2], constants); a[8] := op([8, 2], constants);

Lastly we try to verify that the conditions from earlier hold:

> evalf(subs(xi = .2, subs(x = xi, v1negc-v1posc)));
-1.7597825261536669519
> evalf(subs(xi = .2, subs(x = xi, v2negc-v2posc)));
-1.8936659961101033997
> evalf(subs([x = 0, xi = .2], diff(v1negc, x)));
-0.38633519704430619686

They should hold for any xi, but they don't appear to. All of these should be 0. For a large xi, the numbers get very large so I was thinking perhaps roundoff error, but even when I do an exact solution and then evalf just at the end, I still have large error so I'm not sure what the problem is. Sorry for the long question. Thanks so much for the help.


Viewing all articles
Browse latest Browse all 164

Trending Articles