Quantcast
Channel: MaplePrimes - Questions and Posts tagged with system
Viewing all articles
Browse latest Browse all 164

How to find suitable initial condition

$
0
0

Hello my friends

I have a problem with initial condition for below system of differential equation

sys := {6*(diff(a(t), t))^2+12*a(t)*(diff(a(t), t$2))-3*a(t)^2*phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2), 2*c*a(t)^3*phi(t)^(-2*c-1)*sqrt(1-alpha*(diff(phi(t), t))^2)-3*alpha*a(t)^2*phi(t)^(-2*c)*(diff(a(t), t))*(diff(phi(t), t))/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t$2))/sqrt(1-alpha*(diff(phi(t), t))^2)+2*c*alpha*a(t)^3*phi(t)^(-2*c-1)*(diff(phi(t), t))^2/sqrt(1-alpha*(diff(phi(t), t))^2)-alpha^2*a(t)^3*phi(t)^(-2*c)*(diff(phi(t), t))^2*(diff(phi(t), t$2))/(1-alpha*(diff(phi(t), t))^2)^(3/2), R(t) = 6*((diff(a(t), t))^2/a(t)^2+(diff(a(t), t$2))/a(t)), W(t) = -phi(t)^(-2*c)*sqrt(1-alpha*(diff(phi(t), t))^2)/(1/a(t)^3+a(t)^3+phi(t)^(-2*c)/sqrt(1-alpha*(diff(phi(t), t))^2))}

I set {c,alpha}={1,1} but initial conditon is problem ... since I got the following message from maple to illustrate diagrams of W(t), a(t) and even phi(t)

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up
 

please help me.

 

with the best regard

 


Viewing all articles
Browse latest Browse all 164

Trending Articles